PoW 27: A Certain Remainder

- 1. Divide the polynomials $(x^2 + 14x + 45) \div (x + 5)$. Write your answer as a quotient plus remainder.
- 2. Find a quadratic polynomial $ax^2 + bx + c$ so that dividing $(ax^2 + bx + c) \div (x + 2)$ gives remainder 3.
- 3. Find a quadratic polynomial $ax^2 + bx + c$ so that
 - dividing $(ax^2 + bx + c) \div (x 1)$ gives remainder 0;
 - dividing $(ax^2 + bx + c) \div (x 3)$ gives remainder 0.

Write one or two sentences describing how you found $ax^2 + bx + c$ in Part 3.

PoW 27: A Certain Remainder

- 1. Divide the polynomials $(x^2+14x+45) \div (x+5)$. Write your answer as a quotient plus remainder.
- 2. Find a quadratic polynomial $ax^2 + bx + c$ so that dividing $(ax^2 + bx + c) \div (x + 2)$ gives remainder 3.
- 3. Find a quadratic polynomial $ax^2 + bx + c$ so that
 - dividing $(ax^2 + bx + c) \div (x 1)$ gives remainder 0;
 - dividing $(ax^2 + bx + c) \div (x 3)$ gives remainder 0.

Write one or two sentences describing how you found $ax^2 + bx + c$ in Part 3.

1. Practice

3. Apply

2. Work Backwards

- 1. Practice
- 2. Work Backwards
- 3. Apply